Bioinformatic analysis of circadian gene oscillation in mouse aorta.
نویسندگان
چکیده
BACKGROUND Circadian rhythmicity of many aspects of cardiovascular function-blood pressure, coagulation and contractile function-is well established, as is diurnal variation in important clinical events, such as myocardial infarction and stroke. Here, we undertake studies to globally assess circadian gene expression in murine aorta. METHODS AND RESULTS Aortae from mice were harvested at 4-hour intervals for 2 circadian cycles (48 hours). Gene expression was assessed by expression profiling and subjected to a gene ontology bioinformatics analysis. Three hundred thirty transcripts exhibited a circadian pattern of oscillation in mouse aorta, including those intrinsic to the function of the molecular clock. In addition, many genes relevant to protein folding, protein degradation, glucose and lipid metabolism, adipocyte maturation, vascular integrity, and the response to injury are also included in this subset of roughly 7000 genes screened for circadian oscillation. CONCLUSIONS Detection of functional cassettes of vascular genes that exhibit circadian regulation in the mouse will facilitate elucidation of the mechanisms by which the molecular clock may interact with environmental variables to modulate cardiovascular function and the response to therapeutic interventions.
منابع مشابه
Angiotensin II induces circadian gene expression of clock genes in cultured vascular smooth muscle cells.
BACKGROUND Daily rhythms of mammalian physiology and endocrinology are regulated by circadian pacemakers. The master circadian pacemaker resides in the suprachiasmatic nucleus, which is located in the hypothalamus of the brain, but circadian oscillators also exist in peripheral tissues. Because many studies have demonstrated apparent circadian variations in the frequency of cardiovascular disor...
متن کاملAnalysis of Gene Regulatory Networks in the Mammalian Circadian Rhythm
Circadian rhythm is fundamental in regulating a wide range of cellular, metabolic, physiological, and behavioral activities in mammals. Although a small number of key circadian genes have been identified through extensive molecular and genetic studies in the past, the existence of other key circadian genes and how they drive the genomewide circadian oscillation of gene expression in different t...
متن کاملP-127: Characterization of Filia, A Maternal Effect Gene, in Bovine Oocytes and Embryos
Background: Genetic analysis in mice has lead to find about maternal effect genes such as Filia. Filia knock out mice have a 50% decrease in fertility. Filia dysfunction causes disorders in pre-implantation development. Mutations in human Filia gene, cause FBHM (Familial Biparental Hydatidiform Mole) in women. Filia protein in mice is homologous to that of rat and human, so this idea has emerge...
متن کاملInvolvement of posttranscriptional regulation of Clock in the emergence of circadian clock oscillation during mouse development.
Circadian clock oscillation emerges in mouse embryo in the later developmental stages. Although circadian clock development is closely correlated with cellular differentiation, the mechanisms of its emergence during mammalian development are not well understood. Here, we demonstrate an essential role of the posttranscriptional regulation of Clock subsequent to the cellular differentiation for t...
متن کاملCircadian transcription in liver
Circadian rhythms regulate a wide range of cellular, physiological, metabolic and behavioral activities in mammals. The complexity of tissue- and day-time specific regulation of thousands of clock controlled genes (CCGs) suggests that many transcriptional regulators are involved. Our bioinformatic analysis is based on two published DNA-array studies from mouse liver. We search overrepresented t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 112 17 شماره
صفحات -
تاریخ انتشار 2005